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Brief History

I In the 1980s S.Fajtlowicz created a computer program for
automatic generation of conjectures in graph theory. Thus the
harmonic index first appeared in On conjectures on
Graffiti-II,Congr. Numer.60(1987) 187-197.

I In 2012 Zhong reintroduced this index and called it harmonic
index. He found the minimum and maximum values of the
harmonic index for simple connected graphs, trees and
unicyclic graphs and characterized the corresponding extremal
graphs in his papers The harmonic index for graphs, Appl.
Math. Lett. 25 (2012) 561-566 and The harmonic index on
unicyclic graphs, Ars Combinatoria, 104 (2012) 261-269.

I Zhong et al. studied the harmonic index of bicyclic graphs
and characterized the corresponding extremal graphs in their
paper The harmonic index on bicyclic graphs, Utilitas
Mathematica, 90 (2013), in press.
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I Deng et al. determined the trees with the second to the sixth
maximum harmonic indices, and bicyclic graphs with the first
four maximum harmonic indices and they gave a lower bound
for harmonic index of trees and chemical trees with given
number of pendant vertices in their papers On harmonic
indices of trees, unicyclic graphs and bicyclic graphs, preprint
and Harmonic indices of trees and chemical trees with a given
number of pendant vertices, preprint.

I Deng et al. considered the relation between the harmonic
index H(G ) and the chromatic number χ(G ) and proved that
χ(G ) ≤ 2H(G ) by using the effect of removal of a minimum
degree vertex on the harmonic index in their paper On the
harmonic index and the chromatic number of a graph,
Discrete Appl. Math. 161(2013) 2740-2744.
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I Gutman gave a survey of selected degree-based topological
indices and summarized their properties in his paper
Degree-based topological indices, Croat. Chem. Acta 86
(4)(2013)351-361.

I Jerline et al. gave the formula for calculating the harmonic
index of a graph with more than one cut-vertex in their paper
Harmonic index of graphs with more than one cut-vertex,
preprint.
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HARMONIC INDEX

The Harmonic index H(G ) of a graph G is defined as the sum of

the weights
2

d(u) + d(v)
of all edges uv of G , where d(u) denotes

the degree of the vertex u in G .

That is H(G ) =
∑

uv∈E(G)

2

d(u) + d(v)
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COMET

A comet is a tree composed of a star and an appended path. We
denote by T (n, n1) the comet of order n with n1 pendant vertices,
that is, a tree formed by a path Pn−n1 of which one end vertex
coincides with a pendant vertex of a star Sn1+1, where
2 ≤ n1 ≤ n − 1.

. . .Sn1+1 { . . .

Pn-n1

If n1 ≤ n − 2, the harmonic index of T (n, n1) is

H(T (n, n1)) =
2(n1 − 1)

n1 + 1
+

2

n1 + 2
+

2(n − n1 − 2)

4
+

2

3
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DOUBLE STAR

A tree is called a double star Sp,q if it is obtained from connecting
the centres of Sp and Sq by an edge, where 1 < p ≤ q, as shown in
the figure below. Then for a double star Sp,q with n vertices, we
have p + q = n and p ≤ bn2c.

. . . . 
. 

.

SqSp { }

H(Sp,q) =
2(p − 1)

p − 1
+

2(n − p − 1)

n − p + 1
+

2

n
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Lemma

The harmonic index of Sc
p,q is given by

H(Sc
p,q) =

n − 3

2
+

2(p − 1)

n + p − 3
+

2(n − p − 1)

2n − p − 3



Lemma

The harmonic index of the double star Sp,q is monotonically
increasing for n ≥ 4 in p.

Proof.

Let f (p) =
2(p − 1)

p − 1
+

2(n − p − 1)

n − p + 1
+

2

n
.

f
′
(p) = 4

{
1

(p − 1)2
− 1

(n − p + 1)2

}
=

4(n + 2)(n − 2p)

(p − 1)2(n − p + 1)2

Since n ≥ 4 and p > 1, we have n − 2p > 0. This implies
f
′
(p) > 0 and then Sp,q is increasing for n ≥ 4 in p.
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Theorem

The harmonic index of the Nordhaus-Gaddum type for a double
star Sp,q is monotonically increasing for n ≥ 4 in p.



Jerline et al.1 gave the formula for calculating the harmonic index
of a graph with more than one cut-vertex as follows.

Lemma

Let C = {v1, v2, . . . , vl} be the set of all cut-vertices and
B = {B1,B2, . . . ,Bk} be the set of all blocks of a simple
connected graph G. Then

H(G ) =
k∑

i=1

H(Bi )− 2
l∑

i=1

∑
B∈B′

i

∑
x∈NB(vi )

x /∈C

{
1

dB(vi ) + dB(x)
− 1

dG (vi ) + dG (x)

}

−
l∑

i=1

∑
B∈B′

i

∑
x∈NB(vi )

x∈C

{
1

dB(vi ) + dB(x)
− 1

dG (vi ) + dG (x)

}

where B ′i = {B ∈ B|vi ∈ B}, 1 ≤ i ≤ l .

1Amalorpava Jerline J, Benedict Michaelraj L, Dhanalakshmi K, Syamala P,
Harmonic index of graphs with more than one cut-vertex, preprint



Observation

Suppose that e = uv be an edge such that u is a cut-vertex and
u ∈ Bi . Then the contribution of e to the calculation H(G ) is

denoted by
1

dBi
(u) + dBi

(v)
− 1

dG (u) + dG (v)
≥ 0.

Observation

From the above equation, it is clear that
H(G ) = sum of the harmonic indices of blocks-

2(sum of the contribution of each edge one of whose end
vertex is a cut-vertex)-

2(sum of the contribution of each edge both of whose end
vertices are cut-vertices)

=sum of the harmonic indices of blocks−2x − 2y
where
x = sum of the contribution of each edge one of whose end vertex
is a cut-vertex and y = sum of the contribution of each edge both
of whose end vertices are cut-vertices.
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Theorem

Let T be a tree with n vertices and n0 pendent vertices. Then

H(T ) ≥ n − 1− n0

{
n − 2

n

}
with equality if and only if T ∼= Sn and

H(T ) ≤ n − 1

2
+ n0

{
1

6

}
with equality if and only if T ∼= Pn.



Proof. The least value of H(T ) will exist for trees with all the
edges having one end is a cut-vertex and the other end is not a
cut-vertex. That is, n0 = n − 1 and in all the blocks the degree of
one end is n − 1 and the other is 1. Therefore

x ≥ (n − 1)

(
1

2
− 1

n

)
and y = 0.

H(T ) ≥ n − 1− 2(n − 1)

(
1

2
− 1

n

)
= n − 1− n0

{
n − 2

n

}
There is a tree structure of this type, namely star. Therefore
equality holds for star.



The greatest value of H(T ) will exist for trees with all the edges
having both the ends as cut-vertex. Since a tree has at least two

pendant vertices n0 ≥ 2. Therefore x ≤ n0
1

6
and

y ≤ (n − 1− n0)
1

4
.

H(T ) ≤ n − 1− 2n0
1

6
− 2(n − 1− n0)

1

4

≤ n − 1

2
+ n0

{
1

6

}
There is a tree structure of this type, namely path. Therefore
equality holds for path.



Lemma

The function f (n, x) =
2(x − 1)

x + 1
+

2

x + 2
+

(n − x − 2)

2
+

2

3
is a

decreasing function for 3 ≤ x ≤ n − 2 in x.

Lemma

For any n, H(T (n, 2)) > H(T (n, 3)) > H(T (n, 4)) > · · · >
H(T (n, n − 3)) > H(T (n, n − 2)).

Lemma
2 Let T be a tree of order n ≥ 4 with n1 pendant vertices. If
n1 ≤ n − 2, that is, T is not a star then, H(T ) ≥ H(T (n, n1)).

2Deng H, Balachandran S, Ayyaswamy S K, Venkatakrishnan Y B, Harmonic
indices of trees and chemical trees with a given number of pendant vertices,
preprint.
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Theorem

Among all n-vertex trees, for n ≥ 4, the comet T(n,n-2) are the
trees with the second minimum harmonic index, which is equal to
2(n − 3)

n − 1
+

2

n
+

2

3
.

Proof.

I Let T be a tree of order n ≥ 4 with n1 pendant vertices.

I If n1 ≤ n − 2, H(T ) ≥ H(T (n, n1)).

I H(T (n, n1)) > H(T (n, n− 2)) for all n1 ≥ n− 3 with equality
if and only if n1 = n − 2.

I Since T (n, n − 2) is the unique tree, this T (n, n − 2) is the
unique tree of order n with second minimum harmonic Index.
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Note: There can exist trees with n − 2 pendant vertices that is
not a comet but has
H(T ) > H(T (n, n − 2)) and H(T ) < H(T (n, n − 3)).

One such example is S7,3.

H(T (10, 8)) =
109

45
, H(S7,3) =

27

10
and H(T (10, 7)) =

26

9

So, for the third minimum harmonic Index, we have to search in
double star with n − 2 pendant vertices.
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Theorem

Among all n-vertex trees, for n ≥ 6, the double star S3,n−3 are the
trees with the third minimum harmonic index, which is equal to
3n2 − 8n − 4

n(n − 2)
.

Proof.

I The harmonic index of the double star Sp,q is monotonically
increasing.

I S2,n−2 is the comet T(n,n-2) and it has the second minimum
harmonic index.

I So the third minimum harmonic index is for S3,n−3.
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